335 research outputs found

    Learning to Order Things

    Full text link
    There are many applications in which it is desirable to order rather than classify instances. Here we consider the problem of learning how to order instances given feedback in the form of preference judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a two-stage approach in which one first learns by conventional means a binary preference function indicating whether it is advisable to rank one instance before another. Here we consider an on-line algorithm for learning preference functions that is based on Freund and Schapire's 'Hedge' algorithm. In the second stage, new instances are ordered so as to maximize agreement with the learned preference function. We show that the problem of finding the ordering that agrees best with a learned preference function is NP-complete. Nevertheless, we describe simple greedy algorithms that are guaranteed to find a good approximation. Finally, we show how metasearch can be formulated as an ordering problem, and present experimental results on learning a combination of 'search experts', each of which is a domain-specific query expansion strategy for a web search engine

    Learning Multi-label Alternating Decision Trees from Texts and Data

    Get PDF
    International audienceMulti-label decision procedures are the target of the supervised learning algorithm we propose in this paper. Multi-label decision procedures map examples to a finite set of labels. Our learning algorithm extends Schapire and Singer?s Adaboost.MH and produces sets of rules that can be viewed as trees like Alternating Decision Trees (invented by Freund and Mason). Experiments show that we take advantage of both performance and readability using boosting techniques as well as tree representations of large set of rules. Moreover, a key feature of our algorithm is the ability to handle heterogenous input data: discrete and continuous values and text data. Keywords boosting - alternating decision trees - text mining - multi-label problem

    PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers

    Get PDF
    The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control the risk of the latter. These results allow to bound the risk of very general estimation procedures, as well as to perform model selection

    A survey of cost-sensitive decision tree induction algorithms

    Get PDF
    The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field

    Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields

    Get PDF
    Motivation: The heterogeneity of cancer cannot always be recognized by tumor morphology, but may be reflected by the underlying genetic aberrations. Array comparative genome hybridization (array-CGH) methods provide high-throughput data on genetic copy numbers, but determining the clinically relevant copy number changes remains a challenge. Conventional classification methods for linking recurrent alterations to clinical outcome ignore sequential correlations in selecting relevant features. Conversely, existing sequence classification methods can only model overall copy number instability, without regard to any particular position in the genome

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    Probabilistic reframing for cost-sensitive regression

    Full text link
    © ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Knowledge Discovery from Data (TKDD), VOL. 8, ISS. 4, (October 2014) http://doi.acm.org/10.1145/2641758Common-day applications of predictive models usually involve the full use of the available contextual information. When the operating context changes, one may fine-tune the by-default (incontextual) prediction or may even abstain from predicting a value (a reject). Global reframing solutions, where the same function is applied to adapt the estimated outputs to a new cost context, are possible solutions here. An alternative approach, which has not been studied in a comprehensive way for regression in the knowledge discovery and data mining literature, is the use of a local (e.g., probabilistic) reframing approach, where decisions are made according to the estimated output and a reliability, confidence, or probability estimation. In this article, we advocate for a simple two-parameter (mean and variance) approach, working with a normal conditional probability density. Given the conditional mean produced by any regression technique, we develop lightweight “enrichment” methods that produce good estimates of the conditional variance, which are used by the probabilistic (local) reframing methods. We apply these methods to some very common families of costsensitive problems, such as optimal predictions in (auction) bids, asymmetric loss scenarios, and rejection rules.This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, and TIN 2013-45732-C4-1-P and GVA projects PROMETEO/2008/051 and PROMETEO2011/052. Finally, part of this work was motivated by the REFRAME project (http://www.reframe-d2k.org) granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA) and funded by Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).Hernández Orallo, J. (2014). Probabilistic reframing for cost-sensitive regression. ACM Transactions on Knowledge Discovery from Data. 8(4):1-55. https://doi.org/10.1145/2641758S15584G. Bansal, A. Sinha, and H. Zhao. 2008. Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting. Journal of Management Information System 25, 3 (Dec. 2008), 315--336.A. P. Basu and N. Ebrahimi. 1992. Bayesian approach to life testing and reliability estimation using asymmetric loss function. Journal of Statistical Planning and Inference 29, 1--2 (1992), 21--31.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2010. Quantification via probability estimators. In Proceedings of the 2010 IEEE International Conference on Data Mining. IEEE, 737--742.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2013. Aggregative quantification for regression. Data Mining and Knowledge Discovery (2013), 1--44.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2009. Calibration of machine learning models. In Handbook of Research on Machine Learning Applications. IGI Global, 128--146.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2011. Using negotiable features for prescription problems. Computing 91, 2 (2011), 135--168.J. Bi and K. P. Bennett. 2003. Regression error characteristic curves. In Proceedings of the 20th International Conference on Machine Learning (ICML’03).Z. Bosnić and I. Kononenko. 2008. Comparison of approaches for estimating reliability of individual regression predictions. Data & Knowledge Engineering 67, 3 (2008), 504--516.Z. Bosnić and I. Kononenko. 2009. An overview of advances in reliability estimation of individual predictions in machine learning. Intelligent Data Analysis 13, 2 (2009), 385--401.L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.P. F. Christoffersen and F. X. Diebold. 1996. Further results on forecasting and model selection under asymmetric loss. Journal of Applied Econometrics 11, 5 (1996), 561--571.P. F. Christoffersen and F. X. Diebold. 1997. Optimal prediction under asymmetric loss. Econometric Theory 13 (1997), 808--817.I. Cohen and M. Goldszmidt. 2004. Properties and benefits of calibrated classifiers. Knowledge Discovery in Databases: PKDD 2004 (2004), 125--136.S. Crone. 2002. Training artificial neural networks for time series prediction using asymmetric cost functions. In Proceedings of the 9th International Conference on Neural Information Processing.J. Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7 (2006), 1--30.M. Dumas, L. Aldred, G. Governatori, and A. H. M. Ter Hofstede. 2005. Probabilistic automated bidding in multiple auctions. Electronic Commerce Research 5, 1 (2005), 25--49.C. Elkan. 2001. The foundations of cost-sensitive learning. In Proceedings of the 17th International Conference on Artificial Intelligence (’01), Bernhard Nebel (Ed.). San Francisco, CA, 973--978.G. Elliott and A. Timmermann. 2004. Optimal forecast combinations under general loss functions and forecast error distributions. Journal of Econometrics 122, 1 (2004), 47--79.T. Fawcett. 2006a. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861--874.T. Fawcett. 2006b. ROC graphs with instance-varying costs. Pattern Recognition Letters 27, 8 (2006), 882--891.C. Ferri, P. Flach, and J. Hernández-Orallo. 2002. Learning decision trees using the area under the ROC curve. In Proceedings of the International Conference on Machine Learning. 139--146.C. Ferri, P. Flach, and J. Hernández-Orallo. 2003. Improving the AUC of probabilistic estimation trees. In Proceedings of the 14th European Conference on Machine Learning (ECML’03). Springer, 121--132.C. Ferri and J. Hernández-Orallo. 2004. Cautious classifiers. In ROC Analysis in Artificial Intelligence, 1st International Workshop, ROCAI-2004, Valencia, Spain, August 22, 2004, J. Hernández-Orallo, C. Ferri, N. Lachiche, and P. A. Flach (Eds.). 27--36.P. Flach. 2012. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press.G. Forman. 2008. Quantifying counts and costs via classification. Data Mining and Knowledge Discovery 17, 2 (2008), 164--206.S. García and F. Herrera. 2008. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. The Journal of Machine Learning Research 9, 2677--2694 (2008), 66.R. Ghani. 2005. Price prediction and insurance for online auctions. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD’05). ACM, New York, NY, 411--418.C. W. J. Granger. 1969. Prediction with a generalized cost of error function. Operational Research (1969), 199--207.C. W. J. Granger. 1999. Outline of forecast theory using generalized cost functions. Spanish Economic Review 1, 2 (1999), 161--173.P. Hall, J. Racine, and Q. Li. 2004. Cross-validation and the estimation of conditional probability densities. Journal of the American Statistical Association 99, 468 (2004), 1015--1026.P. Hall, R. C. L. Wolff, and Q. Yao. 1999. Methods for estimating a conditional distribution function. Journal of the American Statistical Association (1999), 154--163.T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.J. Hernández-Orallo. 2013. ROC curves for regression. Pattern Recognition 46, 12 (2013), 3395--3411.J. Hernández-Orallo, P. Flach, and C. Ferri. 2012. A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research 13 (2012), 2813--2869.J. Hernández-Orallo, P. Flach, and C. Ferri. 2013. ROC curves in cost space. Machine Learning 93, 1 (2013), 71--91.J. N. Hwang, S. R. Lay, and A. Lippman. 1994. Nonparametric multivariate density estimation: A comparative study. IEEE Transactions on Signal Processing 42, 10 (1994), 2795--2810.R. J. Hyndman, D. M. Bashtannyk, and G. K. Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics (1996), 315--336.N. Japkowicz and M. Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press.M. Jino, B. T. de Abreu, and others. 2010. Machine learning methods and asymmetric cost function to estimate execution effort of software testing. In Proceedings of the 2010 3rd International Conference on Software Testing, Verification and Validation (ICST’10). IEEE, 275--284.B. Kitts and B. Leblanc. 2004. Optimal bidding on keyword auctions. Electronic Markets 14, 3 (2004), 186--201.N. Lachiche and P. Flach. 2003. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In Proceedings of the International Conference on Machine Learning, Vol. 20-1. 416.H. Papadopoulos. 2008. Inductive conformal prediction: Theory and application to neural networks. Tools in Artificial Intelligence 18 (2008), 315--330.H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. 2002. Inductive confidence machines for regression. In Machine Learning: ECML 2002, Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.). Lecture Notes in Computer Science, Vol. 2430. Springer, Berlin, 185--194.H. Papadopoulos, V. Vovk, and A. Gammerman. 2011. Regression conformal prediction with nearest neighbours. Journal of Artificial Intelligence Research 40, 1 (2011), 815--840.T. Pietraszek. 2007. On the use of ROC analysis for the optimization of abstaining classifiers. Machine Learning 68, 2 (2007), 137--169.J. C. Platt. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, Boston, 61--74.F. Provost and P. Domingos. 2003. Tree induction for probability-based ranking. Machine Learning 52, 3 (2003), 199--215.R Team and others. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.R. Ribeiro. 2011. Utility-based Regression. PhD thesis, Department of Computer Science, Faculty of Sciences, University of Porto.M. Rosenblatt. 1969. Conditional probability density and regression estimators. Multivariate Analysis II 25 (1969), 31.S. Rosset, C. Perlich, and B. Zadrozny. 2007. Ranking-based evaluation of regression models. Knowledge and Information Systems 12, 3 (2007), 331--353.R. E. Schapire, P. Stone, D. McAllester, M. L. Littman, and J. A. Csirik. 2002. Modeling auction price uncertainty using boosting-based conditional density estimation. In Proceedings of the International Conference on Machine Learning. 546--553.G. Shafer and V. Vovk. 2008. A tutorial on conformal prediction. Journal of Machine Learning Research 9 (2008), 371--421.J. A. Swets, R. M. Dawes, and J. Monahan. 2000. Better decisions through science. Scientific American 283, 4 (Oct. 2000), 82--87.R. D. Thompson and A. P. Basu. 1996. Asymmetric loss functions for estimating system reliability. In Bayesian Analysis in Statistics and Econometrics. John Wiley & Sons, 471--482.L. Torgo. 2005. Regression error characteristic surfaces. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 697--702.L. Torgo. 2010. Data Mining with R. Chapman and Hall/CRC Press.L. Torgo and R. Ribeiro. 2007. Utility-based regression. Knowledge Discovery in Databases: PKDD 2007. 597--604.L. Torgo and R. Ribeiro. 2009. Precision and recall for regression. In Discovery Science. Springer, 332--346.P. Turney. 2000. Types of cost in inductive concept learning. Canada National Research Council Publications Archive.L. Wasserman. 2006. All of Nonparametric Statistics. Springer-Verlag, New York.M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorobeychik. 2004. Price prediction in a trading agent competition. Journal of Artificial Intelligence Research 21 (2004), 19--36.K. Yu and M. C. Jones. 2004. Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association 99, 465 (2004), 139--144.B. Zadrozny and C. Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 694--699.A. Zellner. 1986. Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association (1986), 446--451.H. Zhao, A. P. Sinha, and G. Bansal. 2011. An extended tuning method for cost-sensitive regression and forecasting. Decision Support Systems
    corecore